EFFECT OF NiO AND CoO ADDITIVES ON CRYSTAL STRUCTURE AND MAGNETIC PROPERTIES IN MANUFACTURING MAGNETS BaFe12O19
DOI: 10.54647/materials430216 86 Downloads 160813 Views
Author(s)
Abstract
The synthesis of BaFe12-2xCoxNixO19 (x = 0.5-1.5) at a calcination temperature of 1000°C using the coprecipitation method has been done by varying the concentration of the mixed precursor in order to identify the optimum sample. Barium Hexaferrite powder with 0.5% and 1% Nio-CoO has a BaFe12O19 phase. The DT-TGA curve analysis, at temperatures above 1000oC with a relatively small decrease in mass of 0.37%, indicates that the unwanted compounds have decomposed and the Barium Hexaferrite phase begins to form. Samples with a composition of 1%, NiO-CoO formed BaFe2O4 and NiBa phases, with a quantity of 96.4% BaFe2O4 phase. The phase change is caused by the lack of oxygen which weakening of the Fe-Sr-O bond. The magnetic properties of Barium Hexaferrite powder were successfully improved at 1% NiO-CoO, with a BHmax value of 2.26 MGOe.
Keywords
BaFe12O19; Crystal Structure ; Magnetic Properties
Cite this paper
Ramlan, Marzuki Naibaho, Endah Puspita, Yahri Seftiadi, Masno Ginting,
EFFECT OF NiO AND CoO ADDITIVES ON CRYSTAL STRUCTURE AND MAGNETIC PROPERTIES IN MANUFACTURING MAGNETS BaFe12O19
, SCIREA Journal of Materials.
Volume 8, Issue 1, February 2023 | PP. 1-14.
10.54647/materials430216
References
[ 1 ] | E. Handoko et al., “Microwave absorption performance of barium hexaferrite multi-nanolayers,” Mater. Express, vol. 10, no. 8, pp. 1328–1336, 2020, doi: 10.1166/mex.2020.1811. |
[ 2 ] | M. Ginting et al., “Effect of Co and Ni additions as doping materials on the micro-structures and the magnetic properties of barium hexa-ferrites,” Case Stud. Therm. Eng., vol. 18, p. 100589, 2020, doi: 10.1016/j.csite.2020.100589. |
[ 3 ] | J. Edianta, N. Fauzi, M. Naibaho, F. S. Arsyad, and I. Royani, “Review of the effectiveness of plant media extracts in barium hexaferrite magnets (Bafe12o19),” Sci. Technol. Indones., vol. 6, no. 2, pp. 39–52, 2021, doi: 10.26554/STI.2021.6.2.39-52. |
[ 4 ] | D. Chen, Y. Liu, Y. Li, K. Yang, and H. Zhang, “Microstructure and magnetic properties of Al-doped barium ferrite with sodium citrate as chelate agent,” J. Magn. Magn. Mater., vol. 337–338, pp. 65–69, 2013, doi: 10.1016/j.jmmm.2013.02.036. |
[ 5 ] | S. Anand, S. Pauline, and C. J. Prabagar, “Zr doped Barium hexaferrite nanoplatelets and RGO fillers embedded Polyvinylidenefluoride composite films for electromagnetic interference shielding applications,” Polym. Test., vol. 86, no. March, p. 106504, 2020, doi: 10.1016/j.polymertesting.2020.106504. |
[ 6 ] | S. Gupta, S. K. Deshpande, V. G. Sathe, and V. Siruguri, “Effect of scandium substitution on magnetic and transport properties of the M-type barium hexaferrites,” J. Alloys Compd., vol. 815, p. 152467, 2020, doi: 10.1016/j.jallcom.2019.152467. |
[ 7 ] | R. Ramlan, P. Sardjono, M. Muljadi, D. Setiabudidaya, and F. Gulo, “Analysis of the physical, mechanical, and magnetic properties of hard magnetic composite materials NdFeB made using bakelite polymers,” J. Magn., vol. 24, no. 1, pp. 39–42, 2019, doi: 10.4283/JMAG.2019.24.1.039. |
[ 8 ] | V. Pratap, A. K. Soni, S. M. Abbas, A. M. Siddiqui, and N. E. Prasad, “Effect of zinc substitution on U-type barium hexaferrite-epoxy composites as designed for microwave absorbing applications,” J. Alloys Compd., vol. 865, p. 158280, 2021, doi: 10.1016/j.jallcom.2020.158280. |
[ 9 ] | C. P. Granja-Banguera, D. G. Silgado-Cortázar, and J. A. Morales-Morales, “Transition Metal Substituted Barium Hexaferrite-Modified Electrode: Application as Electrochemical Sensor of Acetaminophen,” Molecules, vol. 27, no. 5, 2022, doi: 10.3390/molecules27051550. |
[ 10 ] | B. da Costa Andrade and M. A. Macêdo, “Structural and magnetoelectric properties of a new w-type hexaferrite (Sr0.85Ce0.15Co2Fe16O27-Δ),” Adv. Mater. Res., vol. 975, pp. 263–267, 2014, doi: 10.4028/www.scientific.net/AMR.975.263. |
[ 11 ] | J. Y. Kim et al., “Enhancement of adhesion between polyphenylene sulfide and copper by surface treatments,” Curr. Appl. Phys., vol. 14, no. 1, pp. 118–121, 2014, doi: 10.1016/j.cap.2013.10.015. |
[ 12 ] | Ramlan, Muljadi, P. Sardjono, D. Setiabudidaya, and F. Gulo, “Influence of addition Ba-Ferrite on the hardness, magnetic properties and corrosion resistance of hybrid bonded magnet NdFeB,” J. Phys. Conf. Ser., vol. 1204, no. 1, 2019, doi: 10.1088/1742-6596/1204/1/012013. |
[ 13 ] | S. Verma et al., “Understanding the phase evolution with temperature in pure (BaFe12O19) and zinc-zirconium co-doped barium hexaferrite (BaZnZrFe10O19) samples using Pawley and Rietveld analysis,” Mater. Today Commun., vol. 27, no. April, p. 102291, 2021, doi: 10.1016/j.mtcomm.2021.102291. |
[ 14 ] | Ramlan, D. Setiabudidaya, Suprapedi, A. A. Bama, and Muljadi, “Study on the effect of CaO addition on micro structure and magnetic properties of BaFe12O19 made using powder metallurgy technique,” AIP Conf. Proc., vol. 2221, 2020, doi: 10.1063/5.0003036. |
[ 15 ] | M. Chandel et al., “Fabrication of Ni2+ and Dy3+ substituted Y-Type nanohexaferrites: A study of structural and magnetic properties,” Phys. B Condens. Matter, vol. 595, p. 412378, 2020, doi: 10.1016/j.physb.2020.412378. |
[ 16 ] | J. Mohammed et al., “Crystal structure refinement and the magnetic and electro-optical properties of Er3+–Mn2+-substituted Y-type barium hexaferrites,” Ceram. Int., vol. 47, no. 13, pp. 18455–18465, 2021, doi: 10.1016/j.ceramint.2021.03.169. |
[ 17 ] | T. T. Carol, J. Mohammed, B. Hamid, S. Mishra, S. Kumar, and A. K. Srivastava, “Effect of Cr – Bi Substitution on The Structural, Optical, Electrical and Magnetic Properties of Strontium Hexaferrites,” Phys. B Phys. Condens. Matter, vol. 575, p. 411681, 2019, doi: 10.1016/j.physb.2019.411681. |
[ 18 ] | I. Ramli, I. N. Saidah, F. R. S, and M. Zainuri, “Pengaruh Variasi pH Pelarut HCl Pada Sintesis Barium M-Heksaferrit dengan Doping Zn (BaFe11,4Zn0,6O19) Menggunakan Metode Kopresipitasi,” J. Sains dan Seni ITS, vol. 1, no. 1, pp. 41–46, 2012. |
[ 19 ] | Z. E. Senida, Ramli, Ratnawulan, and Hidayati, “Pengaruh Variasi Komposisi MnFe2O4 Terhadap Sifat Magnetik Nanokomposit MnFe2O4 / PANi yang Disintesis dengan Metoda Sol – Gel Spin Coating Mahasiswa Pendidikan Fisika , FMIPA Universitas Negeri Padang Staf Pengajar Jurusan Fisika , FMIPA Universita,” Pillar Phys., vol. 12, pp. 17–24, 2019. |
[ 20 ] | M. Khandani, M. Yousefi, S. S. S. Afghahi, M. M. Amini, and M. B. Torbati, “An Investigation of Structural and Magnetic Properties of Ce – Nd Doped Strontium Hexaferrite Nanoparticles as A Microwave Absorbent,” Mater. Chem. Phys., vol. 235, p. 121722, 2019, doi: 10.1016/j.matchemphys.2019.121722. |
[ 21 ] | Y. Iriani, L. Setyaningsih, and A. Jamaluddin, “Analisis pengaruh variasi dopan lantanum terhadap struktur kristal dan morfologi lapisan tipis barium strontium titanat,” Indones. J. Appl. Phys., vol. 2, no. 2, pp. 170–175, 2012. |
[ 22 ] | S. K. Chawla, S. S. Meena, P. Kaur, R. K. Mudsainiyan, and S. M. Yusuf, “Materials Effect of Site Preferences on Structural and Magnetic Switching Properties of CO – Zr Doped Strontium Hexaferrite SrCo x Zr x Fe ( 12 À 2 x ) O 19,” J. Magn. Magn. Mater., vol. 378, pp. 84–91, 2015, doi: 10.1016/j.jmmm.2014.10.168. |
[ 23 ] | A. U. Rasyid, P. Southern, J. A. Darr, S. Awan, and S. Manzoor, “Strontium Hexaferrite (SrFe12O19 ) Based Composites for Hyperthermia Applications,” J. Magn. Magn. Mater., vol. 344, pp. 134–139, 2013, doi: 10.1016/j.jmmm.2013.05.048. |
[ 24 ] | S. Ghezelbash, M. Yousefi, M. Hossainisadr, and S. Baghshahi, “Structural and Magnetic Properties of Sn4+ Doped Strontium Hexaferrites Prepared via Sol–Gel Auto-Combustion Method,” IEEE Trans. Magn., pp. 1–6, 2018, doi: 10.1109/TMAG.2018.2844364. |