The intracellular interaction of biomolecules by means of emission and resonance of infrared photons. A hypothesis.
DOI: 10.54647/biology18231 98 Downloads 5184 Views
Author(s)
Abstract
The diversity of biological processes in the cell, which often occur in parallel, requires very good temporal and spatial coordination. In addition to the very extensively studied intracellular chemical signalling, a comprehensive physical information system appears to be required. The hypothesis is presented that the thermally induced vibration and photon emission of the biomolecules is the basis of such an information system. The electromagnetic ultra-weak radiation exactly reflects the chemical structure of the emitting molecule. Under specific conditions, it is partially coherent and can then activate other molecules through resonance. Aspects of emission and resonance are discussed in detail. The hypothesis is demonstrated using the example of communication between the cell periphery with the Golgi apparatus, the signal transduction pathways and intranuclear transcription.
Keywords
intracellular Signaling, molecular Vibration, Signal Transduction, ultraweak Photon- Emission, Golgi Apparatus ,Transcription ,Transcription Error
Cite this paper
Werner Jaross,
The intracellular interaction of biomolecules by means of emission and resonance of infrared photons. A hypothesis.
, SCIREA Journal of Biology.
Volume 7, Issue 3, June 2022 | PP. 66-81.
10.54647/biology18231
References
[ 1 ] | Cooper GM. The Cell: A Molecular Approach. 2nd edition. Sunderland (MA): Sinauer Associates; (2000). Pathways of Intracellular Signal Transduction. Available from: https://www.ncbi.nlm.nih.gov/books/NBK9870/ |
[ 2 ] | Alberts B, Johnson A, Lewis J, Morgan D, Raff M, Roberts K, et al.Molecular Biology of the Cell, Wilson J, Hunt t , editors . Norton § Company;,2017 DOI 10.120179781315735368 |
[ 3 ] | M. Levin: Molecular bioelectricity in developmental biology: new tools and recent discoveries: control of cell behavior and pattern formation by transmembrane potential gradients. Bioessays, 34(3), 205-17 (2012) DOI: 10.1002/bies.201100136 |
[ 4 ] | N. Rouleau and B. T. Dotta: Electromagnetic fields as structure-function zeitgebers in biological systems: environmental orchestrations of morphogenesis and consciousness. Front Integr Neurosci, 8, 84 (2014) DOI: 10.3389/fnint.2014.00084 |
[ 5 ] | M. Lemeshko, R. V. Krems, J. M. Doyle and S. Kais: Manipulation of molecules with electromagnetic fields. Molecular Physics, 111(12-13), 1648-1682 (2013)DOI: 10.1080/00268976.2013.813595 |
[ 6 ] | B. T. Chernet and M. Levin: Transmembrane voltage potential is an essential cellular parameter for the detection and control of tumor development in a Xenopus model. Dis Model Mech, 6(3), 595-607 (2013)DOI: 10.1242/dmm.010835 |
[ 7 ] | Kobayashi, M. Takeda, T. Sato, Y. Yamazaki, K. Kaneko, K. Ito, H. Kato and H. Inaba: In vivo imaging of spontaneous ultraweak photon emission from a rat's brain correlated with cerebral energy metabolism and oxidative stress. Neurosci Res, 34(2), 103-13 (1999) DOI: 10.1016/s0168-0102(99)00040-1 |
[ 8 ] | R. Nuccitelli: Endogenous electric fields in embryos during development, regeneration and wound healing. Radiat Prot Dosimetry, 106(48), 375-83 (2003) DOI:10.1093/oxfordjournals.rpd.a0063 |
[ 9 ] | R. H. Funk: Endogenous electric fields as guiding cue for cell migration. Front Physiol, 6, 143 (2015) DOI: 10.3389/fphys.2015.00143 |
[ 10 ] | R. H.. Funk:Biophysical mechanisms complementing “classical” cell biology (2018)Frontiers in Bioscience 23(5),921-39 (2018) DOI: 10.2741/4625 |
[ 11 ] | A. Foletti, S. Grimaldi, A. Lisi, M. Ledda and A. R. Liboff: Bioelectromagnetic medicine: the role of resonance signaling. Electromagn Biol Med, 32(4), 484-99 (2013) DOI: 10.3109/15368378.2012.743908 |
[ 12 ] | A. Foletti, M. Ledda, S. Grimaldi, E. D'Emilia, L. Giuliani, A. Liboff and A. Lisi: The trail from quantum electro dynamics to informative medicine. Electromagn Biol Med, 34(2), 147-50 (2015) DOI: 10.3109/15368378.2015.1036073 |
[ 13 ] | A. De Ninno and M. Pregnolato: Electromagnetic homeostasis and the role of low- amplitude electromagnetic fields on life organization. Electromagn Biol Med, 36(2), 115-122 (2017)DOI: 10...1080/15368378.2016.1194293 |
[ 14 ] | Jaross W. Communication of the cell periphery with the Golgi Apparatus: A Hypothesis. |
[ 15 ] | Jaross W . Hypothesis on interactions of macromoleculesbased molecular vibraion patterns in cells and tissues. Frontiers in Bioscience. 2018;23(3):940-6 DOI: 10.2741/4626 |
[ 16 ] | Jaross .W.The Possible Role of Molecular Vibration in Intracellular Signaling. J Cell Signal.2020 ;1(4) 180-6 DOI = {10.33696/signaling.1.027}, |
[ 17 ] | Jaross W. Discussion on the Possible Role of Molecular Vibration in Intracellular Signalling. Current Advances in Chemistry and Biochemistry Vol 3 [Internet]. Book Publisher International (a part of SCIENCEDOMAIN International); 2021 Mar 4;68– 76. : doi = {10.9734/bpi/cacb/v3/7722d}, |
[ 18 ] | Jaross, W. (2016). Are Molecular Vibration Patterns of Cell Structural Elements Used for Intracellular Signalling? The Open Biochemistry Journal, 10(1), 12–16. DOI:10.2174/1874091x01610010012 |
[ 19 ] | M. J. Pelletier and C. C. Pelletier: Spectroscopic Theory for Chemical Imaging. In: Raman, Infrared, and Near-Infrared Chemical Imaging. John Wiley & Sons, Inc., (2010)DOI: 10.1002/9780470768150.ch1 |
[ 20 ] | R. W. Brown, Y. C. Cheng, E. M. Haacke, M. R. Thompson and R. Venkatesan: Electromagnetic Principles. In: Magnetic Resonance Imaging. John Wiley & Sons Ltd, (2014)DOI: 10.1002/9781118633953.app1 |
[ 21 ] | G. Steiner and C. Zimmerer: IV. Infrared and Raman Spectra: Datasheet from Landolt- Börnstein - Group VIII Advanced Materials and Technologies · Volume 6A1: "Polymer Solids and Polymer Melts – Definitions and Physical Properties I" in SpringerMaterials (http://dx.doi.org/10.1007/978-3-642-32072-9_22 ). In: Ed K. F. Arndt&M. D. Lechner. Springer-Verlag Berlin Heidelberg, (2013)DOI: 10.1007/978-3-642-32072-9_22 |
[ 22 ] | Z. Movasaghi, S. Rehman and D. I. ur Rehmann: Fourier Transform Infrared (FTIR) Spectroscopy of Biological Tissues. Applied Spectroscopy Rev, 43(2), 134-179 (2008)DOI: 10.1080/05704920701829043 |
[ 23 ] | XX Atom-Photon-Wechselwirkungen: Absorption, Emission, Streuung. (2020). Fermionen, Bosonen, Photonen, Korrelationen Und Verschränkung, 2127–2161. DOI:10.1515/9783110649130-026 |
[ 24 ] | M. Cifra and P. Pospisil: Ultra-weak photon emission from biological samples: definition, mechanisms, properties, detection and applications. J Photochem Photobiol B, 139, 2-10 (2014)DOI: 10.1016/j.jphotobiol.2014.02.009 |
[ 25 ] | A. Rastogi and P. Pospisil: Spontaneous ultraweak photon emission imaging of oxidative metabolic processes in human skin: effect of molecular oxygen and antioxidant defense system. J Biomed Opt, 16(9), 096005 (2011) DOI: 10.1117/1.3616135 |
[ 26 ] | I. Cosic, D. Cosic and K. Lazar: Environmental Light and Its Relationship with Electromagnetic Resonances of Biomolecular Interactions, as Predicted by the Resonant Recognition Model. Int J Environ Res Public Health, 13(7) (2016) DOI: 10.3390/ijerph13070647 |
[ 27 ] | I. Cosic: Macromolecular bioactivity: is it resonant interaction between macromolecules?--Theory and applications( 2013) Trans Biomed Eng, 41(12), 1101-14 (1994)DOI: 10.1109/10.335859 |
[ 28 ] | I. Cosic, D. Cosic and K. Lazar: Is it possible to predict electromagnetic resonances in proteins, DNA and RNA? EPJ Nonlinear Biomedical Physics, 3(1), 5 (2015)DOI: 10.1140/epjnbp/s40366-015-0020-6 |
[ 29 ] | I. Cosic, E. Pirogova, V. Vojisavljevic and Q. Fang: Electromagnetic properties of Biomolecules.(2006) FME Transactions, 34, 71-801 |
[ 30 ] | O. Kucera and M. Cifra: Cell-to-cell signaling through light: just a ghost of chance? Cell Commun Signal, (2013) 11, 87 DOI: 10.1186/1478-811X-11-87 |
[ 31 ] | D. Havelka, M. Cifra and O. Kucera: Multi-mode electro-mechanical vibrations of a microtubule: In silico demonstration of electricv pulse moving along a microtubule. (2014) Appl Phys Lett, 104(24), 243702 DOI: 10.1063/1.48841180 |
[ 32 ] | Murugan NJ, Karbowski LM, Persinger MA. Cosic‘s Resonance Recognition Model for Protein Sequences and Photon Emission Differentiates Lethal and Non-Lethal Ebola Strains: Implications for Treatment. Open Journal of Biophysics. 2015;05(01):35- 43.DOI: 10.4236/ojbiphy.2015.51003 |
[ 33 ] | IUPAC. Compendium of Chemical Terminology, 2nd ed. (the "Gold Book"). Compiled by A. D. McNaught and A. Wilkinson. Blackwell Scientific Publications, Oxfordx . |
[ 34 ] | Electronic and Vibrational Molecular States. Charge and Energy Transfer Dynamics in Molecular Systems [Internet]. Wiley-VCH Verlag GmbH & Co. KGaA; 2011 Feb 25;9– 66. Available from: http://dx.doi.org/10.1002/9783527633791.ch2 |
[ 35 ] | Goffin, V., & Kelly, P. A. (2002). Protein Phosphorylation and Protein-Protein Interactions. Endocrine Updates, 3–19. DOI:10.1007/978-1-4757-3600-7_1 |
[ 36 ] | Ghelis, T. (2011). Signal processing by protein tyrosine phosphorylation in plants. Plant Signaling & Behavior, 6(7), 942–951. DOI:10.4161/psb.6.7.15261 |
[ 37 ] | Hunter, T. (1995). Protein kinases and phosphatases: The Yin and Yang of protein phosphorylation and signaling. Cell, 80(2), 225–236. DOI:10.1016/0092-8674(95)90405-0 |
[ 38 ] | Fischer, E. H., Zander, N. F., Lorenzen, J., Dadabay, C., & Cool, D. E. (1993). Protein Tyrosine Phosphorylation-Dephosphorylation and Cell Signaling. Tyrosine Phosphorylation/Dephosphorylation and Downstream Signalling, 3–9. DDOI: 10.4236/ojbiphy.2015.51003 OI:10.1007/978-3-642-78247-3_1 |
[ 39 ] | Ardito, F., Giuliani, M., Perrone, D., Troiano, G., & Muzio, L. L. (2017). The crucial role of protein phosphorylation in cell signaling and its use as targeted therapy (Review). International Journal of Molecular Medicine, 40(2), 271–280. DOI:10.3892/ijmm.2017.3036 |
[ 40 ] | A. De Ninno and M. Pregnolato: Electromagnetic homeostasis and the role of low- amplitude electromagnetic fields on life organization. Electromagn Biol Med, 36(2), 115-122 (2017) DOI: 10.1080/15368378.2016.1194293 |
[ 41 ] | De Ninno, A., & Castellano, A. C. (2011). Effect of Coordination of Molecules on the Properties of Water as Solvent. Key Engineering Materials, 495, 347–350. DOI:10.4028/www.scientific.net/kem.495.347 |
[ 42 ] | De Ninno, A., & De Francesco, M. (2020). An equation for the isosbestic point wavelength in aqueous solutions of electrolytes. Journal of Molecular Structure, 1200, 127125. DOI:10.1016/j.molstruc.2019.127125 |
[ 43 ] | De Ninno, A. (2017). Dynamics of formation of the Exclusion Zone near hydrophilic surfaces. Chemical Physics Letters, 667, 322–326. DOI:10.1016/j.cplett.2016.11.015 |
[ 44 ] | Hwang, S. G., Hong, J. K., Sharma, A., Pollack, G. H., & Bahng, G. (2018). Exclusion zone and heterogeneous water structure at ambient temperature. PLOS ONE, 13(4), e0195057. DOI:10.1371/journal.pone.0195057 |
[ 45 ] | Ardito, F., Giuliani, M., Perrone, D., Troiano, G., & Muzio, L. L. (2017). The crucial role of protein phosphorylation in cell signaling and its use as targeted therapy (Review). International Journal of Molecular Medicine, 40(2), 271–280. DOI:10.3892/ijmm.2017.3036 |
[ 46 ] | Eukaryotic Transcription. (n.d.). Transcription, 71–84. DOI:10.4324/9780203166314_chapter_6 |
[ 47 ] | Transcription initiation sequence (transcription initiator sequence;initiator, Inr; initiator element; initiator box, transcription initiation site, mRNA initiation site, transcription start site, cap site). (2015). The Dictionary of Genomics, Transcriptomics and Proteomics, 1–1. doi:10.1002/9783527678679.dg13524 |
[ 48 ] | Zuo, Y., & Steitz, T. A. (2016). A structure-based kinetic model of transcription. Transcription, 8(1), 1–8. DOI:10.1080/21541264.2016.1234821 |
[ 49 ] | Error in Transcription. (2008). Encyclopedia of Genetics, Genomics, Proteomics and Informatics, 630–631. DOI:10.1007/978-1-4020-6754-9_5523 |
[ 50 ] | Standfuss, J., Edwards, P. C., D’Antona, A., Fransen, M., Xie, G., Oprian, D. D., & Schertler, G. F. X. (2011). The structural basis of agonist-induced activation in constitutively active rhodopsin. Nature, 471(7340), 656–660. DOI:10.1038/nature09795 |
[ 51 ] | Palczewski K. (2012). Chemistry and biology of vision. The Journal of biological chemistry, 287(3), 1612–1619. https://doi.org/10.1074/jbc.R111.301150 |
[ 52 ] | Branigan B, Tadi P. Physiology, Olfactory. [Updated 2021 May 9]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2021 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK542239/ |
[ 53 ] | Hoehn RD, Nichols DE, Neven H and Kais S (2018) Status of the Vibrational Theory of Olfaction. Front. Phys. 6:25. DOI: 10.3389/fphy.2018.00025 |
[ 54 ] | Lloyd S.(2011) Quantum coherence in biological systems. Journal of Physics: Conference Series,302: 012037. DOI.org/10.1088/1742-6596/3021/012037 |
[ 55 ] | IJsbrand M. Kramer, Chapter 16 - Signaling through the Insulin Receptor: Phosphoinositide 3-Kinases and AKT, Editor(s): IJsbrand M. Kramer, Signal Transduction (Third Edition), Academic Press, 2016, Pages 849-886, ISBN 9780123948038, https://doi.org/10.1016/B978-0-12-394803-8.00016-4. |
[ 56 ] | Saltiel AR, Pessin JE. Insulin signaling pathways in time and space. Trends Cell Biol. 2002 Feb;12(2):65-71. DOI: 10.1016/s0962-8924(01)02207-3. PMID: 11849969. |
[ 57 ] | White MF, Insulin Signaling in Health and Disease Science • 2003 • Vol 302, Issue 5651 • pp. 1710-1711 • DOI: 10.1126/science.1092952 |
[ 58 ] | Draznin, B. (2006). Molecular Mechanisms of Insulin Resistance: Serine Phosphorylation of Insulin Receptor Substrate-1 and Increased Expression of p85 : The Two Sides of a Coin. Diabetes, 55(8), 2392–2397. DOI:10.2337/db06-0391 |
[ 59 ] | J T Knudtson, E M Eyring.( 1974) Laser-Induced Chemical Reactions .Annual Review of Physical Chemistry 25:255-274 https://doi.org/10.1146/annurev.pc.25.100174.001351 |
[ 60 ] | Córdova, M. O. N., Ramírez, C. I. F., Bejarano, B. V., Razo, G. A. A., Flores, F. J. P., Tellez, V. C., & Ruvalcaba, R. M. (2011). Comparative Study Using Different Infrared Zones of the Solventless Activation of Organic Reactions. International Journal of Molecular Sciences, 12( doi:10.1038/nature07050 . 12), 8575–8580. DOI:10.3390/ijms12128575 |
[ 61 ] | Chee, H. K., & Oh, S. J. (2013). Molecular Vibration-Activity Relationship in the Agonism of Adenosine Receptors. Genomics & Informatics, 11(4), 282. DOI:10.5808/gi.2013.11.4.282 |
[ 62 ] | Chee, H. K., Yang, J.-S., Joung, J.-G., Zhang, B.-T., & Oh, S. J. (2015). Characteristic molecular vibrations of adenosine receptor ligands. FEBS Letters, 589(4), 548–552. DOI:10.1016/j.febslet.2015.01.024 |
[ 63 ] | Murugan, N. J., Persinger, M. A., Karbowski, L. M., & Dotta, B. T. (2020). Ultraweak Photon Emissions as a Non-Invasive, Early-Malignancy Detection Tool: An In Vitro and In Vivo Study. Cancers, 12(4), 1001.DOI:10.3390/cancers12041001 |
[ 64 ] | Dotta BT. Ultra-weak Photon Emissions Differentiate Malignant Cells from Non- Malignant Cells In Vitro. Archives of Cancer Res,1.Cooper GM. The Cell: A Molecular Approach. 2nd edition. Sunderland (MA): Sinauer Associates; (2000). Pathways of Intracellular Signal Transduction. Available from: https://www.ncbi.nlm.nih.gov/books/NBK9870/ 4(2) (2016)DOI: 10.21767/2254- 6081.100085 4(2) (2016) |
[ 65 ] | Santos, S.D.M.; Ferrell, J.E. (2008), "On the cell cycle and its switches", Nature, 454 (7202): 288–9,DOI:10.1038/454288a |
[ 66 ] | Holt L. J.; Krutchinsky A. N.; et al. (2008). "Positive feedback sharpens the anaphase switch". Nature. 454 (7202): 353–357. Bibcode:2008Natur.454..353H. DOI:10.1038/nature07050 |