Analytical approach to the time evolution of rotation of galaxies

Volume 4, Issue 5, October 2019     |     PP. 163-175      |     PDF (448 K)    |     Pub. Date: August 10, 2019
DOI:    239 Downloads     6434 Views  

Author(s)

E. Casuso, Instituto de Astrofisica de Canarias, 38205, La Laguna, Tenerife, Spain
J. E. Beckman, Instituto de Astrofisica de Canarias, 38205, La Laguna, Tenerife, Spain; C.S.I.C., Madrid, Spain

Abstract
We present here an analytical approach to the theoretical model for the time evolution of angular momentum of galaxies presented previously in Casuso and Beckman(2015), where the Coriolis force acting on a galaxy situated at the sur-face of a rotating cosmic void could play an important role in addition to tidal torques among proto-galaxies to explain the present angular momentum distri-bution. We use the Emmy Noether theorem in Lagrangian Mechanics to obtain a theoretical relation between the angular momentum of galaxies and the cosmic time, and compare our results with both numerical models and observations.

Keywords
cosmology

Cite this paper
E. Casuso, J. E. Beckman, Analytical approach to the time evolution of rotation of galaxies , SCIREA Journal of Physics. Volume 4, Issue 5, October 2019 | PP. 163-175.

References

[ 1 ] Barnes, J., Efstathiou, G. 1987, ApJ,319, 575
[ 2 ] Binney, J., Tremaine, S. 1987, ”Galactic Dynamics”, Princeton Univ. Press
[ 3 ] Burkert, A., et al. 2015, arXiv151003262B
[ 4 ] Casuso, E., Beckman, J. E. 2015, MNRAS, 449, 2910
[ 5 ] Catelan, P. Theuns, T. 1996, MNRAS, 282, 436
[ 6 ] Chiueh, T., Lee, J., Lin, L. 2002, ApJ, 581, 794
[ 7 ] Courteau, S., Dutton, A. A. 2015, ApJ, 801, L20
[ 8 ] Doroshkevich, A. G. 1970, Astrofisika, 6, 581
[ 9 ] Dutton, A. A., van den Bosch, F. C. 2012, MNRAS, 421, 608
[ 10 ] Epinat, B., et al. 2012, A&A, 539, 92
[ 11 ] Fall, S. M., Efstathiou, G. 1980, MNRAS, 193, 189
[ 12 ] Fall, S. M. 1983, IAUS, 100, 391
[ 13 ] Fall, S. M., Romanowsky, A. J. 2013, ApJ, 769, L26
[ 14 ] Forster Schreiber, N. M., et al. 2006, ApJ, 645, 1062
[ 15 ] Glazebrook, K. 2013, PASA, 30, 56
[ 16 ] Godel, K. 1949, Rev. Mod. Phy. Vol. 21, 447
[ 17 ] Heavens, A., Peacock, J. 1988, MNRAS, 232, 339
[ 18 ] Hetznecker, H., Burkert, A. 2006, MNRAS, 370, 1905
[ 19 ] Hoyle, F. 1949, in Problems of Cosmical Aerodynamics eds. J. Buergers and H. van de Hulst (Dayton, Ohio: Central Air Documents Office), p. 195
[ 20 ] Maller, A. H., Dekel, A., Somerville, R. 2002, MNRAS, 329, 423
[ 21 ] Mancini, C., et al. 2011, ApJ, 743, 86
[ 22 ] Martinsson, T. P. K., et al. 2013, A&A, 557, 131
[ 23 ] Peebles, P. J. E. 1969, ApJ, 155, 393
[ 24 ] Romanowsky, A. J., Fall, S. M. 2012, ApJS, 203, 1750
[ 25 ] Schaye, J. 2015, MNRAS, 446, 521
[ 26 ] Sciama, D. W. 1955, MNRAS, 115, 2
[ 27 ] Sharples, R., et al. 2012, in Ground-based and Airborne Instrumentation for Astronomy IV, proceedings of the SPI 8446, 9
[ 28 ] Swinbank, A. M., et al. 2012, MNRAS,426, 935
[ 29 ] Vitvitska, M., Klypin, A. A., Kravtsov, A. V., Wechsler, R. H., Primack, J. R., Bullock, J. S. 2002, ApJ, 581, 799
[ 30 ] Warren, M. S., Quinn, P. J., Salmon, J. K., Zurek, W. H. 1992, ApJ, 399, 405
[ 31 ] Wesson, P. S. 1981, Phys. Rev. D, Vol. 23, 8, 1730
[ 32 ] White, S. D. M. 1984, ApJ, 286, 38
[ 33 ] Wisnioski, E., et al. 2015, ApJ, 799, 209
[ 34 ] Zavala, J. et al. 2015, arXiv151202636Z