Electroelastic Actuators for Nano- and Microdisplacement

Volume 3, Issue 2, April 2018     |     PP. 81-91      |     PDF (438 K)    |     Pub. Date: August 3, 2018
DOI: 10.54647/physics14034    4375 Downloads     122171 Views  

Author(s)

Sergey M. Afonin, Department of Intellectual Technical Systems, National Research University of Electronic Technology (MIET), Moscow, Russia, 124498

Abstract
In the general form for the equation of the electroelasticity the generalized structural-parametric model and the generalized matrix transfer function of the electroelastic actuator with the output parameters displacements are determined from the solutions of the wave equation with using the Laplace transform. The parametric structural schematic diagram and the transfer functions of the electroelastic actuator are obtained. The structural-parametric model of the piezoactuator for the transverse, longitudinal, shift piezoelectric effects are constructed. The dynamic and static characteristics of the piezoactuator with the output parameter displacement are obtained.

Keywords
Electroelastic actuator, piezoactuator, structural-parametric model, parametric structural schematic diagram, deformation, transfer functions

Cite this paper
Sergey M. Afonin, Electroelastic Actuators for Nano- and Microdisplacement , SCIREA Journal of Physics. Volume 3, Issue 2, April 2018 | PP. 81-91. 10.54647/physics14034

References

[ 1 ] Schultz, J.; Ueda, J.; Asada, H. Cellular Actuators. Butterworth-Heinemann Publisher: Oxford, 2017, 382 p.
[ 2 ] Uchino, K. Piezoelectric actuator and ultrasonic motors. Kluwer Academic Publisher : Boston, MA, 1997, 347 p.
[ 3 ] Przybylski, J. Static and dynamic analysis of a flextensional transducer with an axial piezoelectric actuation. Engineering structures, 2015, 84, 140–151, doi:10.1016/j.engstruct.2014.11.025.
[ 4 ] Ueda, J.; Secord, T.; Asada, H. H. Large effective-strain piezoelectric actuators using nested cellular architecture with exponential strain amplification mechanisms. IEEE/ASME Transactions on Mechatronics, 2010, 15, 5, 770-782, doi:10.1109/TMECH.2009.2034973.
[ 5 ] Karpelson, M.; Wei, G.-Y.; Wood, R.J. Driving high voltage piezoelectric actuators in microrobotic applications. Sensors and Actuators A: Physical, 2012, 176, 78-89, doi:10.1016/j.sna.2011.11.035.
[ 6 ] Afonin, S.M. Solution of the wave equation for the control of an elecromagnetoelastic transduser. Doklady mathematics, 2006, 73, 2, 307-313, doi:10.1134/S1064562406020402.
[ 7 ] Afonin, S.M. Structural parametric model of a piezoelectric nanodisplacement transduser. Doklady physics, 2008, 53, 3, 137-143, doi:10.1134/S1028335808030063.
[ 8 ] Afonin, S.M. Stability of strain control systems of nano-and microdisplacement piezotransducers. Mechanics of solids, 2014, 49, Journal 196-207, doi:10.3103/S0025654414020095.
[ 9 ] Talakokula, V. ; Bhalla, S.; Ball, R.J.; Bowen, C.R.; Pesce, G.L.; Kurchania, R.; Bhattacharjee, B.; Gupta, A.; Paine, K. Diagnosis of carbonation induced corrosion initiation and progressionin reinforced concrete structures using piezo-impedance transducers. Sensors and Actuators A: Physical, 2016, 242, 79-91, doi:10.1016/j.sna.2016.02.033.
[ 10 ] Cady, W.G. Piezoelectricity: An introduction to the theory and applications of electromechancial phenomena in crystals. McGraw-Hill Book Company : New York, London, 1946, 806 p.
[ 11 ] Physical Acoustics: Principles and Methods. Vol.1. Part A. Methods and Devices. Ed.: Mason, W. New York: Academic Press. 1964, 515 p.
[ 12 ] Prasad, S.; Gallas, Q.; Horowitz, S.; Homeijer, B. Analytical electroacoustic model of a piezoelectric composite circular plate. AIAA Journal, 2006, 41, 10, 2311– 2318, doi:10.2514/1.19855.
[ 13 ] Chiatto, M.; Capuano, F.; Coppola, G.; de Luca, L. LEM characterization of synthetic jet actuators driven by piezoelectric element: A Review. Sensors, 2017, vol. 17, no. 6, 1216- 1246, doi:10.3390/s17061216.
[ 14 ] Afonin, S.M. Structural-parametric model and transfer functions of electroelastic actuator for nano- and microdisplacement. Chapter 9 in Piezoelectrics and Nanomaterials: Fundamentals, Developments and Applications. Ed. Parinov, I.A. Nova Science: New York, 2015, pp. 225-242.
[ 15 ] Afonin, S.M. Structural-parametric model electromagnetoelastic actuator nano- and microdisplacement for precision engineering. Precision Engineering. Engineering and Technology, 2016, 3, 6, 110-119.
[ 16 ] Afonin, S.M. Structural-parametric models and transfer functions of electromagnetoelastic actuators nano- and microdisplacement for mechatronic systems. International Journal of Theoretical and Applied Mathematics, 2016, 2, 2, 52-59, doi:10.11648/j.ijtam.20160202.15.
[ 17 ] Afonin, S.M. Block diagrams of a multilayer piezoelectric motor for nano- and microdisplacements based on the transverse piezoeffect. Journal of computer and systems sciences international, 2015, 54, 3, 424-439, doi:10.1134/S1064230715020021.
[ 18 ] Afonin, S.M. Absolute stability conditions for a system controlling the deformation of an elecromagnetoelastic transduser. Doklady mathematics, 2006, 74, 3, 943-948, doi:10.1134/S1064562406060391.
[ 19 ] Afonin, S.M. Elastic compliances and mechanical and adjusting characteristics of composite piezoelectric transducers. Mechanics of solids, 2007, 42, 1, 43-49, doi:10.3103/S0025654407010062.
[ 20 ] Afonin, S.M. Structural-parametric model electromagnetoelastic actuator nanodisplacement for mechatronics. International Journal of Physics, 2017, 5, 1, 9-15, doi: 10.12691/ijp-5-1-27.
[ 21 ] Afonin, S.M. A structural-parametric model of electroelastic actuator for nano- and microdisplacement of mechatronic system. Chapter 8 in Advances in Nanotechnology. Volume 19. Eds. Bartul, Z., Trenor, J. Nova Science: New York, 2017, pp. 259-284.
[ 22 ] Springer Handbook of Nanotechnology. Ed. by Bhushan B. Springer: Berlin, New York, 2004, 1222 p.
[ 23 ] Afonin, S.M. Structural-parametric model of piezoactuator nano- and microdisplacement for nanoscience. AASCIT Journal of Nanoscience, 2017, 3, 3, 12-18.
[ 24 ] Afonin, S.M. Wave equation and parametric structural schematic diagrams of electromagnetoelastic actuators nano- and microdisplacement. International Journal of Mathematical Analysis and Applications, 2016, 3, 4, 31-38.
[ 25 ] Afonin, S.M. Structural-parametric model electromagnetoelastic actuator nano and microdisplacement for precision engineering. Engineering and Technology, 2016, 3, 6, 110-11.
[ 26 ] Afonin, S.M. Decision Wave Equation and Block Diagram of Electro Magneto Elastic Actuator Nano - and Micro Displacement for Communications Systems. International Journal of Information and Communication Sciences, 2016, 1, 2, 22-29. doi:10.11648/j.ijics.20160102.12.