Compositions and electrical conductivity of Al plasma: a comparison of six ionization potential depression models

Volume 5, Issue 2, April 2020     |     PP. 29-48      |     PDF (1881 K)    |     Pub. Date: June 27, 2020
DOI:    215 Downloads     5412 Views  

Author(s)

W. L. Quan, School of Physics and Telecommunication Engineering, Yulin Normal University, Yulin 537000, China
Z. J. Fu, School of Electrical and Electronic Engineering, Chongqing University of Arts and Sciences, Chongqing 402160, China
Y. J. Gu, National Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics, CAEP, Mianyang 621900, China

Abstract
Recent experiments respectively performed at Linac Coherent Light Source and at Orion Laser evoke much attention on ionization potential depression (IPD) in dense plasma. In this paper, the validity of six IPD models in the warm dense region is examined, including the ion-sphere (IS) model, the Debye-Hückel (DH) model and the model proposed by Stewart and Pyatt (SP), by Ebeling (EB), and by Zaghloul (ZA), via the calculation of the compositions and electrical conductivity of dense Al plasma in a wide range of density. The big difference among these models is found at intermediate densities and low temperature. In this region, the electrical conductivities obtained with EK and ZA model are found in good agreement experiments, while those obtained with SP model are some lower and those with IS and EB model are some higher. It suggests that EK and ZA model are more reasonable than others, since IS and EB model overestimate the IPD in warm dense region, while SP model underestimated it in this region. Nevertheless, all these models exhibit similar behaviors in low density limit, while in high density limit the DH model overestimates ionization potential depression and the rest five models are consistent with IS model. PACS number(s): 52.25.Fi, 52.25.Jm, 52.27.Gr

Keywords
Aluminum plasma, compositions, electrical conductivity,Ionization potential depression

Cite this paper
W. L. Quan, Z. J. Fu, Y. J. Gu, Compositions and electrical conductivity of Al plasma: a comparison of six ionization potential depression models , SCIREA Journal of Physics. Volume 5, Issue 2, April 2020 | PP. 29-48.

References

[ 1 ] R. Rompe and M. Steenbeck, Ergeb. Exakt. Naturw. 18, 257 (1929).
[ 2 ] H. R. Griem, Phys. Rev. 128, 997 (1962).
[ 3 ] H. R. Griem, Plasma spectroscopy (McGraw-Hill Book Co., New York, 1964).
[ 4 ] G. B. Zimmerman and R. M. More, J. Quant. Spectrosc. Radiat. Transfer 23, 517 (1980).
[ 5 ] B. J. B. Crowley, Phys. Rev. A 41, 2176 (1990).
[ 6 ] J. Stein, D. Salzmann, Phys. Rev. A 45, 3943 (1992).
[ 7 ] G. Ecker, W. Kröll, Phys. Fluids 8, 62 (1963).
[ 8 ] J. C. Stewart, K. D. Pyatt Jr, Astrophys. J. 144, 1203 (1966).
[ 9 ] W. Ebeling, W. D. Kremp, and D. Kraft, Theory of Bound States and Ionization Equilibrium in Plasma and Solid (Akademie-Verlag, Berlin, 1976)
[ 10 ] M. R. Zaghloul, Phys. Plasma 15, 042705 (2008).
[ 11 ] S. I. Anisimov, Yu. V. Petrov, Teck. Phys. Lett. 23, 472 (1997).
[ 12 ] Y. T. Lee, J. Quant. Spectrosc. Radiat. Transfer 38,131 (1987).
[ 13 ] H. A. Scott, J. Quant. Spectrosc. Radiat. Transfer 71,689 (2001).
[ 14 ] H.-K. Chung, M. H. Chen, W. L. Morgan, Y. Ralchenko, R. W. Lee, High Energy Density Phys. 1, 3 (2005).
[ 15 ] R. Florido, R. Rodríguez, J. M. Gil, J. G. Rubiano, P. Martel, E. Mínguez, and R. C. Mancini, Phys. Rev. E 80, 056402 (2009).
[ 16 ] S. M. Vinko, O. Ciricosta, B. I. Cho, K. Engelhorn, H.-K. Chung, C. R. D. Brown, T. Burian, J. Chalupský, R. W. Falcone, C. Graves, V. Hájková, A. Higginbotham, L. Juha, J. Krzywinski, H. J. Lee, M. Messerschmidt, C. D. Murphy, Y. Ping, A. Scherz, W. Schlotter, S. Toleikis, J. J. Turner, L. Vysin, T. Wang, B.Wu, U. Zastrau, D. Zhu, R. W. Lee, P. A. Heimann, B. Nagler and J. S. Wark, Nature (Lond.) 482, 59 (2012).
[ 17 ] O. Ciricosta, S. M. Vinko, H.-K. Chung, B.-I. Cho, C. R. D. Brown, T. Burian, J. Chalupský, K. Engelhorn, R. W. Falcone, C. Graves, V. Hájková, A. Higginbotham, L. Juha, J. Krzywinski, H. J. Lee, M. Messerschmidt, C. D. Murphy, Y. Ping, D. S. Rackstraw, A. Scherz, W. Schlotter, S. Toleikis, J. J. Turner, L. Vysin, T. Wang, B. Wu, U. Zastrau, D. Zhu, R. W. Lee, P. Heimann, B. Nagler, and J. S. Wark, Phys. Rev. Lett. 109, 065002 (2012).
[ 18 ] D. J. Hoarty, P. Allan, S. F. James, C. R. D. Brown, L. M. R. Hobbs, M. P. Hill, J. W. O. Harris, J. Morton, M. G. Brookes, R. Shepherd, J. Dunn, H. Chen, E. Von Marley, P. Beiersdorfer, H. K. Chung, R. W. Lee, G. Brown, and J. Emig, Phys. Rev. Lett. 110, 265003 (2013)].
[ 19 ] A. W. DeSilva, J. D. Katsouros, Phys. Rev. E 57, 5945 (1998).
[ 20 ] I. Krisch and H. J Kunze, Phys. Rev. E 58, 6557 (1998).
[ 21 ] J. F. Benage, W. R. Shanahan, M. S. Murillo, Phys. Rev. Lett. 83, 2953 (1999).
[ 22 ] J. Haun, H. J Kunze, S. Kosse, M. Schlanges, R. Redmer, Phys. Rev. E 65, 46407 (2002).
[ 23 ] C. Blancard P. Renaudin, G. Faussurier, and P. Noiret, Phys. Rev. Lett. 88, 215001 (2002).
[ 24 ] D. Sheftman and Ya. E. Krasik, Phys of Plasmas 18, 092704 (2011).
[ 25 ] A.W. DeSilva, A.D. Rakhel, Contrib. Plasma Phys. 45, 236 (2005).
[ 26 ] S. C. Lin, E. L. Resler, and A. Kantrowitz, J. Appl. Phys. 26 ,40(1955).
[ 27 ] D.-K. Kim, I. Kim, Phys. Rev. E 68, 056410 (2003).
[ 28 ] D.-K. Kim, I. Kim, Contrib. Plasma Phys. 47, 173 (2007).
[ 29 ] Z. J. Fu, Q. F. Chen, X. R. Chen, X. W. Sun and W. L. Quan, Phys. Scr. 85, 045502 (2012).
[ 30 ] Z. J. Fu, Q. F. Chen and X. R. Chen, Contrib. Plasma Phys. 52, 251 (2012).
[ 31 ] Z. J. Fu, L. J. Jia, X. W. Sun, Q. F. Chen, High Energy Density Phys.9 ,258 (2013).
[ 32 ] M. R. Zaghloul, J. Phys. D: Appl. Phys. 33, 977-984 (2000).
[ 33 ] M. Desjarlais, Contrib. Plasma Phys. 41267 (2001).
[ 34 ] P. Milani, I. Moullet, W. A. de Heer, Phys. Rev. A, 42, 5150 (1990).
[ 35 ] L. Spitzer, R. Härm, Phys. Rev. 89, 977 (1953).
[ 36 ] M. R. Zaghloul, M. A. Bourham, J. M. Doster, J. D. Powell, Phys. Lett. A 262, 86 (1999).