About the diophantine equation z²= 32y² – 16
DOI: 203 Downloads 6518 Views
Author(s)
Abstract
A Pell Fermat equation and its two classes of solutions are discussed. We give a formula for the pairs of positive solutions, written with the Pell numbers, and some new identities involving these numbers. We build an invariant modulo 4 for each class of solutions.
Keywords
Pell numbers, Pell-Lucas numbers, Markoff equation
Cite this paper
Serge PERRINE,
About the diophantine equation z²= 32y² – 16
, SCIREA Journal of Mathematics.
Volume 4, Issue 5, October 2019 | PP. 126-139.
References
[ 1 ] | Andreescu, T. Andrica, D., Quadratic diophantine equations, Springer Verlag, New York, 2015. |
[ 2 ] | Aigner, M. Markov’s theorem and 100 years of the uniqueness conjecture, Verlag, Cham Heidelberg New York, Dordrecht, London, 2013. |
[ 3 ] | Emerson, E. Recurrent sequences in the equation 𝐷𝑄² = 𝑅² + 𝑁, Fibonacci Quarterly, 7, 1969, 233-242. |
[ 4 ] | Halter Koch, F. Quadratic irrationals - An introduction to classical number theory, CRC Press, New York, 2013. |
[ 5 ] | Koshy, T., Pell and Pell Lucas numbers with applications, Springer Verlag New York, 2014. |
[ 6 ] | LeVeque, W. J. Topics in number theory, vol. 1 and 2, Dover, New York, 2002. |
[ 7 ] | Matthews, K., Quadratic diophantine equations BCMATH programs, Solving 𝑥² − 𝑑𝑦² = 𝑛, 𝑑 > 0, 𝑛 non-zero: for fundamental solutions, by the Lagrange–Mollin-Matthews method http://www.numbertheory.org/php/main_pell_ html 2015. |
[ 8 ] | Perrine, S., Some properties of the equation 𝑥² = 5𝑦² − 4, The Fibonacci Quarterly, 54 (2), 2016, 172–178. |
[ 9 ] | Robertson, J. P., Characterization of fundamental solutions to generalized Pell equations, 2014, http://www.jpr2718.org/ . |
[ 10 ] | Sloane, N. J. A., The On-line Encyclopedia of Integer Sequences, http://oeis.org . |