PROPERTIES OF CAST MULTICOMPONENT HIGH-ENTROPY BORON-DOPED ALLOYS.

Volume 9, Issue 1, February 2024     |     PP. 13-21      |     PDF (316 K)    |     Pub. Date: October 21, 2024
DOI: 10.54647/materials430274    21 Downloads     909 Views  

Author(s)

V. F. Gorban, I. M. Frantsevich Institute of materials science problems of the National Academy of Sciences of Ukraine, 3 Krzhizhanovskogo STR., Kiev, Ukraine
M. O. Krapivka, I. M. Frantsevich Institute of materials science problems of the National Academy of Sciences of Ukraine, 3 Krzhizhanovskogo STR., Kiev, Ukraine

Abstract
The physical, mechanical and tribological properties of cast multicomponent high-entropy boron-doped alloys obtained by vacuum-arc melting are studied. It was found that cast multicomponent high-entropy alloys doped with boron have a hardness of 20-30 GPа and a modulus of elasticity of 400-600 GPа. Alloying high-entropy alloys with a Borut lab6 mixture increases the hardness to 35-45 GPа and the modulus of elasticity to 700-780 GPа. The possibility of setting the coefficient of conversion of hardness to the yield strength knowing the elastic modulus of the material is shown.Alloying high-entropy alloys with boron significantly improves their heat resistance. Thus, the high-entropy tihfnbtamo alloy with the addition of 2% boron reduces the hardness from 13.0 GPа at 20 oC to 8.5 GPа at 900 oC.

Keywords
Keywords: high-entropy alloys, boron, hardness, elastic modulus, elastic deformation, elastic limit, conversion coefficient, friction

Cite this paper
V. F. Gorban, M. O. Krapivka, PROPERTIES OF CAST MULTICOMPONENT HIGH-ENTROPY BORON-DOPED ALLOYS. , SCIREA Journal of Materials. Volume 9, Issue 1, February 2024 | PP. 13-21. 10.54647/materials430274

References

[ 1 ] RANGANATHAN S. Alloyed pleasures: multimetallic cocktails. Current Sci, 2003, 85, 1404–1406
[ 2 ] CANTOR, B., CHANG, I., KNIGHT, P. & VINCENT, A. Microstructural development in equiatomic multicomponent alloys, Materials Science and Engineering, 2004, A 375, 213-218.
[ 3 ] YEH J.W. Recent progress in high-entropy alloys, Ann Chim Sci Mater, 2006, 31, 633–648
[ 4 ] Gorban’, V.F. Andreev, A.A, Shaginyan, L.R. Firstov, S.A., Karpets, M.V., Danilenko, N.I High-Entropy Coatings —Structure and Properties. J. of Superhard Materials.2018.V.40, P. 88-101
[ 5 ] B.S. MURTY, YEH JIEN-WEI, RANGANATHAN S. BHATTACHARJEE High-Entropy Alloys. Second Edition. 2019, 363р. Elsevier Inc.
[ 6 ] SA Firstov, VF Gorban, NI Danilenko, MV Karpets, AA Andreev Thermal stability of superhard nitride coatings based on multicomponent high-entropy alloy of the Ti–V–Zr–Nb–Hf system. Poroshk. Metallurg, 2014, V.52, N 9-10, P. 560-566
[ 7 ] Gorban’, V.F., Andreyev, A.A, Kartmazov, G.N., Chikryzhov, A.M., Karpets, M.V., Dolomanov, A.V.,Ostroverkh, A.A., Kantsyr, E.V. Production and mechanical properties of high-entropic carbide based on the TiZrHfVNbTa multicomponent alloy J. of Superhard Materials. 2017.V.39, P. 166-171
[ 8 ] E. Castle, T.Csanádi, S. Grasso, and et al, "Processing and properties of high-entropy ultra-high temperature carbides,"Sci. Rep.,8, No. 1, 8609 (2018);doi:10.1038/s41598-018-26827-1.
[ 9 ] ZHOU, J. J. ZHANGA, F. ZHANGA, B. et.al. High-entropy carbide: a novel class of multicomponent ceramics. J. Ceramics Int. 2018, 44, 22014–22018.
[ 10 ] X. WEI, J. LIU, F. LI et al, "High entropy carbide ceramics from different starting materials J, Eur. Ceram. Soc., 2019, 39, 2989–2994;doi:10.1016/j.jeurceramsoc.2019.04.006.
[ 11 ] HUIMIN XIANG, YAN XING, FU-ZHI DAI et al. High-entropy ceramics: Present status, challenges, and a look forward. J, Advanced Ceramics 2021, 10, 324-332 https://doi.org/10.1007/s40145-021-0477-y
[ 12 ] V.F. Horban,, M.O. Krapivka, S.O. Firstov, O.M. Myslyvchenko, I.M. Zakiev, and A.O. Samelyuk  Mechanical and tribological properties of cast  monocarbides and multicomponent high-entropy carbides. Powder Metallurgy and Metal Ceramics, 2023. V. 62, DOI 10.1007/s11106-023-00369-2
[ 13 ] J. Dusza, T. Csanádi, D. Medved, R. Sedlák, M. Vojtko, M. Ivor, and P. Šajgalík, “Nanoindentation and tribology of a (Hf–Ta–Zr–Nb–Ti)C high-entropy carbide,” J. Eur. Ceram. Soc., 2020. 41, No. 11, 5417–5426
[ 14 ] K. Wang, L. Chen, C. Xu, W. Zhang, Z. Liu, Y. Wang, and Y. Zhou, “Microstructure and mechanical properties of (TiZrNbTaMo)C high-entropy ceramic,” J. Mater. Sci. Technol., 39, 99–105 (2020)
[ 15 ] Myslyvchenko O. M., Gorban’ V. F., Samelyuk A. V., and Krapivka M. O. The Influence of boron on the structure and physicomechanical properties of high-entropy Ti30Zr25Hf15Nb20Ta10 alloy J. Materials Science 2022. V. 58, Р.422-426.
[ 16 ] K. Lu, J.X. Liu, X.F. Wei, W. Bao, Y. Wu, F. Li, and G.J. Zhang, “Microstructures and mechanical properties of high-entropy (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C ceramics with the addition of SiC secondary phase,” J. Eur. Ceram. Soc., 40, No. 5, 1839–1847 (2020)
[ 17 ] Ji-Xuan Liu, Xiao-Qin Shen, Yue Wu Zhang Guo Jun Mechanical properties of hot-pressed high-entropy diboride-based ceramics May 2020 Journal of Advanced Ceramics 9(4) DOI: 10.1007/s40145-020-0383-8
[ 18 ] Storr, B.; Amezaga, C.;Moore, L.; Iwan, S.; Vohra, Y.K.; Chen,C.-C.; Catledge, S.A. High Entropy Borides Synthesized by the Thermal Reduction of Metal Oxides in Microwave Plasma. Materials 2023,16, 4475. https://doi. 10.3390/ma16124475
[ 19 ] Xiao-Qin SHEN, Yue WU, Fei LI,Yongcheng LIANG, Guo-Jun ZHANG, Ji-Xuan LIU Mechanical properties of hot-pressed high-entropy diboride-based ceramics. J. of Advanced Ceramics. 2020, 9(3): 0–0 ISSN 2226-4108 https://doi.org/10.1007/ s40145 -020-0383-8
[ 20 ] Gorban, V.F., Pechkovskii, É.P.Instrumented indentation for determining the structural state of materials. Powder Metallurgy and Metal Ceramics 2010, 49(7-8), с. 424-429
[ 21 ] Miedema A. R., de Chatel P. F., and de Boer F. R. Cohesion in alloys – fundamentals of a semi-empirical model // Physica B+C. – 1980. – 100, № 1. – P. 1–28.
[ 22 ] Electronic resource. - Access mode: http://www.entall.imim.pl/calculator/
[ 23 ] V.A. Mechnik, N.A. Bondarenko, V.M. Kolodnitskyi, V.I. Zakiev, I.M. Zakiev, S.N. Dub, and N.O. Kuzin, “Physico-mechanical and tribological properties of Fe–Cu–Ni–Sn and Fe–Cu–Ni–Sn–VN nanocomposites obtained by powder metallurgy methods,” Tribol. Ind., 41, No. 2, 188–198 (2019)
[ 24 ] Z. Wang, Q. Fang, J. Li, B. Liu, Y. Liu Effect of lattice distortion on solid solution strengthening of BCC high-entropy alloys, J. Mater. Sci. Technol. 34 (2018) 349-354.
[ 25 ] V. F. Gorban, S. O. Firstov, M. O. Krapivka, A. V. Samelyuk, and D. V. Kurylenko Influence of various factors on the properties of solid-soluble high-entropy alloys based on BCC and FCC phases// Materials Science,–2022.– 58.–Р. 127-131. DOI 10.1007/s11003-022-00641-7
[ 26 ] Horban V.F. Dising of solid solution high entropy alloys with BCC of FCC crystal structures. J. of Materials Engineering – 2024. –52(1). – P.16-26.
[ 27 ] Li Li, Qihong Fang, Jia Li, Bin Liu, Yong Liu, and Peter K. Liaw Lattice-distortion dependent yield strength in high entropy alloys. Mater. Sci. and Eng.: A. – 2020. – 784. – Article number 139323. DOI: 10.1016/j.msea.2020.139323
[ 28 ] Firstov, S.A., Gorban’, V.F., Krapivka, N.A., Pechkovskii, E.P., Danilenko, N.I., Karpets, M.V Mechanical properties of cast multicomponent alloys at high temperatures. Modern Problems of the Physical Materials Science, 2008. 17, P. 126–139,.
[ 29 ] Jamieson Brechtl, Shuying Chen, Chanho Lee, Yunzhu Shi, Rui Feng, Xie Xie, and Peter K. Liaw A Review of the Serrated-Flow Phenomenon and Its Role in the Deformation Behavior of High-Entropy Alloys Metals 2020, 10, 1101; doi:10.3390/met10081101
[ 30 ] S. V. Divinski, A. V. Pokoev, N. Esakkiraja, A. Paul, A mystery of" sluggish difusion" in high-entropy alloys: the truth or a myth?, in: Difusion Foundations, Vol. 17, Trans Tech Publ, 2018, pp. 69-104.
[ 31 ] M. Vaidya, K. Pradeep, B. Murty, G. Wilde, S. Divinski, Bulk tracer difusion in CoCrFeNi and CoCrFeMnNi high entropy alloys, Acta Materialia 146 (2018) 211-22